1. SNS Launch protoCol VO.Lo e e e e e
1.1 SNS Launch protocol technical Specification e
1.1.1 SNS Launch procedure arChiteCturet e e e e e
1.1.2 SNS Launch protocol implementation guide
1.1.3 Appendix A, SNS Launch protocol test tools and validators
1.1.4 Appendix B, near future roadmapttt e
1.1.5 Appendix C, test Keys and SECIelSttt

1.2 SNS Protocol COUE EXaMPIESottt e e e e
1.2.1 SNS Launch protocol Java examples
1.2.2 SNS Launch protocol Python examples
1.2.3 SNS Launch protocol PHP examples

SNS Launch protocol v0.1

® Overview
® Specifications
® Test tooling
® Use cases
® Release notes

Overview

The social network standard (SNS) launch protocol is designed to integrate applications in portal like service.

Specifications

SNS Launch protocol technical specification

Test tooling

Use cases

UC Als gebruiker wil ik vanuit een wijkplatform drempelloos (zonder account aanmaken) naar een e-health module uit een e-health platform
navigeren

Release notes

An overview of released versions
SNS Launch protocol technical specification

® Architecture
® Concepts
® Rationale
® Implementation guide
¢ Communication protocol
® The form-post-redirect message
* JWT message format
® User identifier format
® Security restrictions
® Example message
® Launch configuration requirements
® Producer configuration requirements
® Note that SamenBeter expects links to open in a new tab.
® Consumer configuration requirements
® Appendix A, test keys and secrets
® Public key
® Private Key
® Appendix B, near future roadmap
® Appendix C, Test tools and validators
® Producer test tool
® Consumer test tool.

Architecture

The SNS launch protocol enables portal applications to integrate external applications like tools, games and treatments seamlessly into their
platform. The SNS launch protocol connects applications like tools, games and treatment to a portal like environment. The portal, or consumer in
this context, is the system that has an active session with an authenticated user in the system. The consumer prepares a launch by creating a
JWT token that contains all the launch details needed for the producer to function properly. The producer in this context is the application that

delivers functionality to the user in the portal, either in the context of the portal as an iframe, or in its own context. The producer of the launch
receives the JWT token and unpacks the information in the token to identify the user and the target treatment and launches a new session for the
user.

As an extension to the basic version of the protocol as described above, the producer and consumer are able to communicate directly within the
session of the user in order to exchange additional information or register progress and outcomes. The concept of these services are service profil
es, each consumer and producer can implement and agree on the usage of various profiles that extend the basic usage.

Service
Profiles

Concepts

® Consumer, the portal like service that links to the producer, that is, an application like a tool, a game, or a treatment.
® Producer, the service that delivers an application like a tool, a game, or a treatment to the portal.
®* JWT token, a package exchanged between consumer and producer that contains the relevant launch information.

Rationale

The SNS Launch protocol is highly inspired by the Learner Tool Interoperability (LTI) which has had a tremendous impact on the relation between
learner management systems and tool providers. LTI has simplified the integration of external tools into learner management systems, the whole
landscape of tool providers has emerged. The key concepts the LTI being successful has been:

® Inthe core the LTI standard is simple and clear.
® The LTI standard in its basic form is easy to integrate because it makes use of existing technologies and standards.
® The core standard can be extended by profiles; within LTI there are profiles for reading roster information and writing results.

The SNS launch standard applies these concepts when it comes to defining a successful launch protocol. The key differences are:

® Use of more modern technologies like JWT instead of OAuth 1.x.
® The alignment of user identity with a still to be specified SSO standard.
® More restrictions on security and the JWT validity.

The SNS Launch protocol has the following goals.
Ease of software implementation

® The protocol should be easy to implement, hours instead of days, and days instead of weeks. It does so by standing on the back of
giants; that is make use of existing technologies and standards.

Ease of use and configuration

® The protocol should be easy to configure from both the producer and consumers' side. In the essence, an exchange of endpoint URL and
public key pair should be sufficient.

Scalable, decentral, and point to point

® The architecture should not rely on external or central services and should be point-to-point in the sense that parties should be able to
connect without relying on other parties and scale infinitely.

Secure

® The protocol should mitigate against most common attacks by aligning to pre-existing proven technologies like JWT.

Privacy

® The protocol should support anonymous identities and be reluctant to disseminate personal information.

Implementation guide

This guide describes how to implement the SNS Launch protocol. The protocol consists of:

® The communication protocol, how the interaction of the SNS Launch protocol looks like.
® The JWT message and the related payload.
® The SNS Launch protocol security restrictions.

Communication protocol

The core procedure of the launch looks as follows, the step

1. The client requests access to a (remote) application in the portal environment.
2. The consumer produces the information needed for the JWT, including:
a. User identity
b. Intended resource identifier.
c. The JTW private and public key.
3. The consumer generates the JWT token based on the information above, described in more detail in the JWT message format section.
4. The consumer redirects the user to a html5 page with a form, which contains:
a. The JWT token in a hidden field with name request.
b. The form method is post.
c. The action of the producers endpoint.

5. The client browser posts the redirect form (triggered by javascript).
6. The producer receives the post at the endpoint, and upacks the JWT token.
7. From the JWT token, it unpacks the fields and verifies the following:
a. The identity of the producer (aud).
b. The identity of the consumer (iss).
c. Based on the identity of the producer, the signature of the issuer (iss).
‘Consumer
| 3) Render
information Redirect Form
:Uiant browser

0) Request
access
application

8) Access the
application

5) Receive 6) Validate
JWT package JWT message

The form-post-redirect message

In step 5) in the communication protocol, the user is redirected to the producer with the JWT message. The htmlI5 sample below displays how this

could be implemented.

<!'doctype html >
<htm >

<head>

<script>

wi ndow. onl oad = function () { document.fornms[0].submt(); }

</script>
</ head>
<body>

<f orm net hod="post" action="https://therapieland.nl/..." ...>
<i nput type="hi dden" nane="request" val ue="<JW Ticket>"" />

</fornp
</ body>
</htn >

JWT message format

The message makes use of the JISON Web Token (JWT) standard. The standard is documented here: https://jwt.io/. Implementations in various
languages are widely available. The concept of a JWT token is it consists of a header containing metadata of the token, a body or payload that
consists of a set of required fields, and a signature that should be validated.

The JWT message consists out of the following fields, the fields with an asterix (*) are required.

Description Field

User identity* sub

User email email

First name given_name
Middle name middle_name
Last name family_name
Subject* resource_id
Producer* iss

Domain* aud

Unique message id* jti
Issue time iat
Expiration time* exp

Public / Private key* -

User identifier format

Value

User unique identification, see format for details.
User email

User first name

User middle name

User last name

Identification of the target treatment

URL base of the producer

Base URL of the consumer.

UUID or anything else that makes the message unique
Timestamp from the time of creation

Timestamp for the expiration time

Signing private key, public key for validation.

The format for the user identity is an urn. This identifier is prefixed urn:sns:user, subsequently the reverse domain of the identity platform and
finally the user identity. The format is as follows:

https://jwt.io/

urn: sns: user: <donai n>: <user >

For example:

urn:sns:user:nl.w kiwjk: 123456

Security restrictions

® The JWT must use an async public / private key to sign the JWT tokens. The public key should be made available to the producer, the
private key should remain private on the consumers infrastructure. The use of shared secrets is not allowed, because the issuer of the
JWT cannot guarantee ownership as the key is shared.
® All algorithms starting with HS should NOT be used, that is HS256, HS384, HS512
® The following algorithms can be used by the consumer, the producer should support all algorithms:
RS256, recommended
RS384, optional
RS512, optional
ES256, recommended
ES384, optional
ES512, optional
® The expiration time (exp) on the message should be set to 5 minutes in order to prevent leaking JWT keys to be valid outside a
timeframe.
® The unique message id (jti) should be verified as a nonce and should be based on a random or pseudo random number. If a UUID is
used, it should be initialized with a random number. This approach mitigates replay attacks.
® Tokens must be transported over HTTPS from both consumer and producer sides.

Example message

{
"al g": "RS256",
"typ": "JwW
}
{
"sub": "urn:sns:user:nl.wkiw jk:123456",
"aud": "therapieland.nl",
"iss": "wikiwjk.nl",
"resource_id": "paniek",
"l ast _nane": "Vries",
"m ddl e_nanme": "de",
"exp": 1550663222,
"iat": 1550662922,
"first_name": "Kl aas",
"jti": "abdl55b2-d8b4- 43bb- 8730- 1646ae35357c",
"emai |l ": "kl aas@evries.nl"
}

Launch configuration requirements

Producer configuration requirements

Field Remark Scope
Application URL The endpoint of the producer application. Per application
Public / Private key The public / private keys Preferably per application

Note that SamenBeter expects links to open in a new tab.

Consumer configuration requirements

Field Remark Scope

Consumer public key = The key to validate the consumer JWT message with. Per consumer, based on the iss field value.

Appendix A, test keys and secrets

Test key and secret, please never use outside a test context.

Public key

Type: RSA
Length: 2024

M | BHj ANBgkghki GOwWOBAQEFAAOCAQsAM | BBgKB/ gC+0zqj f 1 2zKvvj WwwE4Ji LYyUgazpx
WD+hnmy LCEXgzf bHI WwRD54MBPJqCt +91 q3PBI vpZoJezQbr zt EWN6O 7qoXq4dygZ4YTXGUH+
Er f gLI vyM// Pf buHU7 0RS+4WDi g2 mPwWQQXSKMDJ z4qSORa75p6x MVHA38xJ gHQGt BWPFMowh
pGs GpCFpxRgl MR735D8gRbhFbSexxMhbyqpQTlr oOubxPFoAec! di CI8KN p2/ NNcRgMZKVI U
3rwhp52Jcnl 90by8UZoDOI t | RoXdaBmmQORWRr m2SC1r Ru+KFi dzj xe2cRi FVXqt hqelTt n2

9at UeVf t JhEgb7Upx KJ PAgVBAAE=

Private Key

Type: RSA
Length: 2024

M | Epw BADANBgkghki GOWOBAQEFAASCBJ Ewgg SNAgEAAOH+AL7TOgN8] bMy++PBTATgm t j

JSpr OnFYP6GhI s| ReDN9scha/ BEPngzw8noK370i r c8Ei +I ngl 7NDmy QORY304j ugher j KBn
hhNcZT4St +ouW | y/ 899u4dTuhFL7hbSKr aY/ BBBdI owivhPi pl 5Fr vimr Ewnd 3f z EmAd DqOH
A8UxvCCGkawak|l WhiFGqUxHvf kPyBFUEVE J7HEy FvKqgl BQuj S7r EBW)B5y V21 | nwo2Whb801xG
AxkpUhTevCGnnYl ycj SRVLXRngPQ 2VGhdloGaZASFZGubZl LW G740WI30PF7Zxd Weq2G
p7VO2bb1glR5V+0nESBvVt SnEok 8 CAWEAAQKB/ VO7cg6M 8y 3f sHI bgf xOV50ScW OY/ Er | 8m
KIFJgxns/ Jayvcpqt OQouy6AW/2i xj 9y33QC0V15r Of ki TgLW S5/ sykhwFoeMunJ8C7Vndf n
ModMA42zWRef eRTT 4YA0OBI ALPwePASKI zu2kt Jot HAMyvNr NpY5/ nT+JYI gx/ Lxhl wk/ HxJ6
uVYi FpAl Nf AGf BphcgxzKWhV23WRYt r | Jc/ XXLvSxK08t voZf mdc4quf 1i 3LpTc+1nZnil+j

ef ZoXQcWUNEbCk5Q 8gvDi gHVbdQ TqT4/i N / 03PnmueWs! j i yhbXDYOVGI CaGQpeNaFnhi |

XPr YEBKAv XI Og6 ECf w7l 7t dOwy PPOvCYFcbQEr 3gng9vg2l SVas8gl OU CeKNSJ9+wbKW dO
DAzt x GShuqDzZj BXj +RSEL1Xr ABj Dpk9Rgpgk Bx3NNXEbCBnYg3+LUSHCt UBW 5anaJi 8JH28
39¢VXj dZbPXBPnp5S93SKj nuoi Bas8oKIl ThOy Ewwdb8Cf wz PAeg765BhD4AMVSz 0 QRy 6 Sf x f

6R0Z8Uo9a2nmk Bi GSKPvX7zQME384208Fv Tl aV\BUoOAhSNGHsf BWMAMT9pz Rl aWAK FPSCVWRi Rg
zg20FYzTweQZOngj e6YRYSoc X641 22zhqVv3Y3Ddgevl i GoxDFgFMBQXeaAcchCvg6LpTl 3EC
fwgl CLRynwMLeLhj Uhvti 5aazj il KrC / QQ0ohJIx/ | Xwyaei t LVEZH7 COH+cU8+AbFnf bSJZT
fyLDl 7bB5B3NNUTLSYLN zAl 8W RLyaYZsx41nl5GLxO+gnB8+MA4nbl hg6YAJl NTp+CoJFqb
NDPX+Eei mUCYzi Er v7TA7GRTs60Cf ws28F+KnzzBj t XQnNCd5ey nOMKYov FXBt 5XW0 yE96
boHalahHdYf VnDc8Ki peL7eLaEv42JbgvOXG 11 AHI6OFxI i SUxnQBe9H 61 j zzHZ3s0j 5wz
KZ8El oNNZoTOxgk1h50Q veaN lseMoaf 2TpPhq6WKDoi dz1Ri 91 4zECf neg4k6J02YpZVAm
1xQUSSPYDawH4 DNl We TMhngBEW Zap7wu79zJkZYdCaegzabb/ FxFSu0+21dj Zbq4+Pdt sxI g
ng8pCbu2s7z+BqC0i Mbz0l1ldeygAf gPANRz mQqvECH Dnj KWk XZI zQNPxnl u3MJZM f DXTSz De
| Bph1YO ag==

Appendix B, near future roadmap

Near future developments will consists of the following
® Alignment with the still to be developed login and identity part of the SNS protocol, the impact probably will be that the JWT message will
contain information about role. Another impact might be that the JWT message will get a higher exp date, matching something like a login
session (30~60 minutes)

® Extension with profiles / services. The protocol will be extended to support communication between producer and consumer. This will be
done by the consumer providing endpoints to the consumer at launch time.

Appendix C, Test tools and validators

Producer test tool
The SNS launch producers can test with the following tool:
https://sns-consumer.edia-tst.eu/

The tools allows to send a SNS Launch request to a given endpoint, and makes use of the test key and secret as provided in Appendix A.

https://sns-consumer.edia-tst.eu/

B8R D o eechbe - Teaic. B 4

(=] & POTDE - COn e BCRa TR
SMS Launch Pad

Unar chetail
ner idenitficatie (lub]

umcsns el wikivio 123455

PRegquait detsils
Lk LR

hitpacsrs- producer.sdia- b swproducel

Rt 10 derlpiis Laumech

Consumer test tool.

Digaatt iy Py WinSow

The tool consumer can use as endpoint the following:

https://sns-producer.edia-tst.eu/validate.html

https://sns-producer.edia-tst.eu/validate.html

L Y NS Lmunob Pad - Teat sppd = *

@ Bpe - produoer s tel s

SMS producer launch validator

Fequest

O AR IR C I h bR LTI N
BRI o e S O E T
radpams BT NDL W ke Ghic
il T SR L et XN e iraidg
bl C X e D B O riy
2D oigimag A e T STy
B ERtee I D D SR O e T Sl
ACIGAM TN e 3w T by 3RTEmFY
TGt wT ritwisnlipgol F o sk W 1N
TRIZSOI UL Tew et oW T WLISMPSTY
e T W R R DT T s
‘LSl L Tl BTy W ags O SRees
O ahiLrd DOl T IO TLILY
sl P peak-
rAmECRTANEE bako WL Wil -

Wy DS NNEFH Todd HriaA X TpPur

Header

{
“Tyn® IWT,
"aig": "RETEE"

Body

{

"sub”: “wrrcsnsouserd wilkdwiio TEI667,
"™ “therapislardLn™,

“tas": “aibiwiini®,

“resourcn_ld"; "dagrinictar”,
“last_name: “Wied”,

“meddie_name™ "de”,

“iat™: 155088377,

“Tarsd_name™: "Klaas®,
AR AT Y BSOS 0G0 e e
HedlstrRvircdRhis oD Salafwic T Tol BfEwed34Bb07

yiatrral W TEDCy 1 LGk g DR T (X

e, "kKiaasPoewes
Fulslic oy

MIBHANBgRatl IR ASE FAADCASRAMIBECKE G « Degit drkwvviwiliwE 4 L Fyligarsa Wil
hery L CEXgzMaHN Y wRDSAWER Mgt « Sig3FBhvpTole O Srm EWHG O gondyg Z4vTRGLU +Erfg
Ly Pt RS+ AN i G X M S T S L oG I P MErwhp
OsGoCFraRaiRTZEDBgREhF Sty apO TrolutaProteckiC IBENIp 2 HNCRMTRVILAr

‘Winkada b

]

SNS Launch procedure architecture

Architecture

The SNS launch protocol enables portal applications to integrate external applications like tools, games and treatments seamlessly into their
platform. The SNS launch protocol connects applications like tools, games and treatment to a portal like environment. The portal, or consumer in
this context, is the system that has an active session with an authenticated user in the system. The consumer prepares a launch by creating a
JWT token that contains all the launch details needed for the producer to function properly. The producer in this context is the application that
delivers functionality to the user in the portal, either in the context of the portal as an iframe, or in its own context. The producer of the launch
receives the JWT token and unpacks the information in the token to identify the user and the target treatment and launches a new session for the
user.

As an extension to the basic version of the protocol as described above, the producer and consumer are able to communicate directly within the
session of the user in order to exchange additional information or register progress and outcomes. The concept of these services are service profil
es, each consumer and producer can implement and agree on the usage of various profiles that extend the basic usage.

Service
Profiles

Concepts

® Consumer, the portal like service that links to the producer, that is, an application like a tool, a game, or a treatment.
® Producer, the service that delivers an application like a tool, a game, or a treatment to the portal.
* JWT token, a package exchanged between consumer and producer that contains the relevant launch information.

Rationale

The SNS Launch protocol is highly inspired by the Learner Tool Interoperability (LTI) which has had a tremendous impact on the relation between
learner management systems and tool providers. LTI has simplified the integration of external tools into learner management systems, the whole
landscape of tool providers has emerged. The key concepts the LTI being successful has been:

® Inthe core the LTI standard is simple and clear.
® The LTI standard in its basic form is easy to integrate because it makes use of existing technologies and standards.
® The core standard can be extended by profiles; within LTI there are profiles for reading roster information and writing results.

The SNS launch standard applies these concepts when it comes to defining a successful launch protocol. The key differences are:

® Use of more modern technologies like JWT instead of OAuth 1.x.
® The alignment of user identity with a still to be specified SSO standard.
® More restrictions on security and the JWT validity.

The SNS Launch protocol has the following goals.
Ease of software implementation

® The protocol should be easy to implement, hours instead of days, and days instead of weeks. It does so by standing on the back of
giants; that is make use of existing technologies and standards.

Ease of use and configuration

® The protocol should be easy to configure from both the producer and consumers' side. In the essence, an exchange of endpoint URL and
public key pair should be sufficient.

Scalable, decentral, and point to point

® The architecture should not rely on external or central services and should be point-to-point in the sense that parties should be able to
connect without relying on other parties and scale infinitely.

Secure

® The protocol should mitigate against most common attacks by aligning to pre-existing proven technologies like JWT.

Privacy

® The protocol should support anonymous identities and be reluctant to disseminate personal information.
SNS Launch protocol implementation guide

Implementation guide

This guide describes how to implement the SNS Launch protocol. The protocol consists of:

® The communication protocol, how the interaction of the SNS Launch protocol looks like.
® The JWT message and the related payload.
® The SNS Launch protocol security restrictions.

Communication protocol

The core procedure of the launch looks as follows, the step

1. The client requests access to a (remote) application in the portal environment.
2. The consumer produces the information needed for the JWT, including:
a. User identity
b. Intended resource identifier.
c. The JTW private and public key.
3. The consumer generates the JWT token based on the information above, described in more detail in the JWT message format section.
4. The consumer redirects the user to a html5 page with a form, which contains:
a. The JWT token in a hidden field with name request.
b. The form method is post.
c. The action of the producers endpoint.
. The client browser posts the redirect form (triggered by javascript).
. The producer receives the post at the endpoint, and upacks the JWT token.
7. From the JWT token, it unpacks the fields and verifies the following:
a. The identity of the producer (aud).
b. The identity of the consumer (iss).
c. Based on the identity of the producer, the signature of the issuer (iss).

[é)]

2) Generate 3) Render
: information IWT Redirect Form

Client browser

0) Request
access

application

8) Access the
application

5) Receive 6) Validate
JWT package JWT message

o

THE FORM-POST-REDIRECT MESSAGE

In step 5) in the communication protocol, the user is redirected to the producer with the JWT message. The htmlI5 sample below displays how this
could be implemented.

<l'doctype html >
<htm >

<head>

<script>

wi ndow. onl oad = function () { docunent.forns[0].submt();

</script>
</ head>
<body>

<f or m net hod="post"
<i nput type="hi dden"

</fornp
</ body>
</htm >

JWT message format

The message makes use of the JISON Web Token (JWT) standard. The standard is documented here: https://jwt.io/. Implementations in various
languages are widely available. The concept of a JWT token is it consists of a header containing metadata of the token, a body or payload that

consists of a set of required fields, and a signature that should be validated.

The JWT message consists out of the following fields, the fields with an asterix (*) are required.

Description Field

User identity* sub

User email email

First name given_name
Middle name middle_name
Last name family_name
Subject* resource_id
Producer* iss

Domain* aud

Unigue message id* jti
Issue time iat
Expiration time* exp

Public / Private key* -

USER IDENTIFIER FORMAT

The format for the user identity is an urn. This identifier is prefixed urn:sns:user, subsequently the reverse domain of the identity platform and

Value

User unique identification, see format for details.
User email

User first name

User middle name

User last name

Identification of the target treatment

URL base of the producer

Base URL of the consumer.

UUID or anything else that makes the message unique
Timestamp from the time of creation

Timestamp for the expiration time

Signing private key, public key for validation.

finally the user identity. The format is as follows:

urn:sns: user: <donai n>: <user >

For example:

action="https://therapieland.nl/..."
nane="request" val ue="<JWr Ticket>"" />

https://jwt.io/

urn:sns:user:nl.w kiw jk: 123456

Security restrictions

® The JWT must use an async public / private key to sign the JWT tokens. The public key should be made available to the producer, the
private key should remain private on the consumers infrastructure. The use of shared secrets is not allowed, because the issuer of the
JWT cannot guarantee ownership as the key is shared.
® All algorithms starting with HS should NOT be used, that is HS256, HS384, HS512
® The following algorithms can be used by the consumer, the producer should support all algorithms:
RS256, recommended
RS384, optional
RS512, optional
ES256, recommended
ES384, optional
ES512, optional
® The expiration time (exp) on the message should be set to 5 minutes in order to prevent leaking JWT keys to be valid outside a
timeframe.
® The unique message id (jti) should be verified as a nonce and should be based on a random or pseudo random number. If a UUID is
used, it should be initialized with a random number. This approach mitigates replay attacks.
® Tokens must be transported over HTTPS from both consumer and producer sides.

EXAMPLE MESSAGE

"al g": "RS256",

"typ": "JW
}
{
"sub": "urn:sns:user:nl.wkiw jk:123456",
"aud": "therapieland.nl",
"iss": "wikiwjk.nl",
"resource_id": "paniek",
"l ast _nane": "Vries",
"m ddl e_nanme": "de",

"exp": 1550663222,
"tat": 1550662922,

"first_name": "Klaas",
"jti": "abdl55b2- d8b4- 43bb-8730- 1646ae35357c",
"emai | ": "kl aas@levries.nl"

Launch configuration requirements

PRODUCER CONFIGURATION REQUIREMENTS

Field Remark Scope
Application URL The endpoint of the producer application. Per application
Public / Private key The public / private keys Preferably per application

NOTE THAT SAMENBETER EXPECTS LINKS TO OPEN IN A NEW TAB.

CONSUMER CONFIGURATION REQUIREMENTS
Field Remark Scope

Consumer public key = The key to validate the consumer JWT message with. Per consumer, based on the iss field value.

Appendix A, SNS Launch protocol test tools and validators

Producer test tool

The SNS launch producers can test with the following tool:

https://sns-consumer.edia-tst.eu/

The tools allows to send a SNS Launch request to a given endpoint, and makes use of the test key and secret as provided in Appendix A.

L] L] Y A Lswmah e - Tesi agd n Fs
L O @ hpEem-conpamer sda-1i w 0o Gy
SMS Launch Pad
User cetails Meniago detaly
Ve kdemiScatie b Behandedng {resource i)
umcsnsusernl wikivwiic 173456 deANC A
E-rmadl (era) Bt [}
ks Poerriesnl wiitkwgienl
Firat name [firss_name Faxfignsn |sud)
Mg Hrasragdeiand nl

Wikl rueie (il _marm)
-]

Last rarr [Lesi_narme)

Wrigs
Requedl detaly Camrely
L LR Oguindy i o s

hitpa - produce pda- B suproducs 1

Bt 1o dedsks Lawsrech

Consumer test tool.

The tool consumer can use as endpoint the following:

https://sns-producer.edia-tst.eu/validate.html

https://sns-consumer.edia-tst.eu/
https://sns-producer.edia-tst.eu/validate.html

BB [o ek Pad - Testappics X %

‘ & BipeJme-producersis- el ssprodec landing himilTeguents . o 0 o

SMS producer launch validator

Fequest

O AR IR C I h bR LTI N
BRI o B TS s O E T XMl
radpams BT NDL W ke Ghic
il T SR L et XN e iraidg
bl C X e D B O riy
2D il B e P T AT
B ERtee I D D SR O e T Sl
ACIGAM TN e 3w T by 3RTEmFY
TGt wT ritwisnlipgol F o sk W 1N
TRIZSOI UL Tew et oW T WLISMPSTY
e T W R R DT T s
‘LSl L Tl BTy W ags O SRees
O ahiLrd DOl T IO TLILY
sl P peak-
rAmECRTANEE bako WL Wil -

Wy DS NNEFH Todd HriaA X TpPur
AR R DF Y RERO S OG0 TPl
HedlstrRvircdRhis oD Salafwic T Tol

Header

{

“Tyn® IWT,
"aig": "RETEE"
B

Body

{

"subi™: “wrrcsnsusernlwikinic TZ34567,
"™ “therapislardLn™,

“155": “wildmiion®,

“resourcn_ld"; "dagrinictar”,
“last_name: “Wied”,
“meddie_name™ "de”,

“iat™: 155088377,

“Tarsd_name™: "Klaas®,

T "Thos 20s- S0en- 4054 - B2 -
BFEaed34BL0T,

i mm‘ .-“‘t._ S _|:!:-:_ e, "kKiaasPoewes

Fulslic oy

MIBHANBgRatl IR ASE FAADCASRAMIBECKE G « Degit drkwvviwiliwE 4 L Fyligarsa Wil
hery L CEXgzMaHN Y wRDSAWER Mgt « Sig3FBhvpTole O Srm EWHG O gondyg Z4vTRGLU +Erfg
Wb Pt o+ WG P w QR K SR MG A d g Rl Spfmamid Ml g G llwf Mtewtg
OsGoCFraRaiRTZEDBgREhF Sty apO TrolutaProteckiC IBENIp 2 HNCRMTRVILAr

Appendix B, near future roadmap

Near future developments will consists of the following

® Alignment with the still to be developed login and identity part of the SNS protocol, the impact probably will be that the JWT message will
contain information about role. Another impact might be that the JWT message will get a higher exp date, matching something like a login
session (30~60 minutes)

® Extension with profiles / services. The protocol will be extended to support communication between producer and consumer. This will be
done by the consumer providing endpoints to the consumer at launch time.

Appendix C, test keys and secrets

Test key and secret, please never use outside a test context.

Public key

Type: RSA
Length: 2024

M | BH ANBgkghki GOWOBAQEFAAOCAQs AM | BBgKB/ gC+0zqj f | 2zKvvj wuwE4Ji LYyUgazpx
WD+hmy LCEXgzf bHI WwRD54MBPJqCt +91 q3PBI vpZoJezQr zt EWN6O 7qoXgdygZ4YTXGCU+
Er f gLI vyM// Pf buHU7 0RS+4WDi g2 nmPwWQQXSKMDI z4qSORa75p6x MVHA38x J gHQGEt BWPFMowh
pGs GoCFpxRgl MR735D8gRbhFbhSexxMbygpQrr oOubxPFoAecl di CI8KN p2/ NNcRgMZKVI U
3rwhp52Jcnl 90by8UZoDOI t | RoXdaBmQORWRr n2SCLr Ru+KFi dzj xe2cRi FVXqt hqelTt n2
9at UeVf t JhEgb7Upx KJIPAgVBAAE=

Private Key

Type: RSA
Length: 2024

M | Epw BADANBgkghki GOWOBAQEFAASCBJ EwggSNAgEAAOH+AL7TOgN8] bMy++PBTATgm t j

JSpr OnFYP6GhI s| ReDN9scha/ BEPngzw8noK370i r c8Ei +I ngl 7NDmy QORY304j ugher j KBn
hhNcZT4St +ouW | y/ 899u4dTuhFL7hbSKr aY/ BBBdl owivhPi pl 5Fr vimr BEwnd 3f z EmAdDgOH
A8UxvCCGkawak|l WhiFGqUxHvf kPyBFUEVt J7HEy FvKql BQuj S7r EBW)B5y V21 | nwo2Whb801xG
AxkpUhTevCGnnYl ycj SRVLXRngPQ 2VGhdloGaZASFZGubZl LW G740WI 30PF7ZxAd Weq2G
p7VO2bb1glR5V+0mESBvt SnEok 8 CAWEAAQKB/ VO7cg6M 8y 3f sHI bgf xOV50ScW OY/ Er | 8m
KIJFJgxns/ Jayvcpqt OQouy6AW/2i xj 9y33QC0V15r Of ki TgLW S5/ sykhwFoeMunJ8C7Vndf n
ModMA42zWRef eRTT 4YA0OBI ALPwePASKI zu2kt Jot HAMyvNr NpY5/ nT+JYI gx/ Lxhl wk/ HxJ6
uVYi FpAl Nf AGf BphcgxzKWhV23WRYt r | Jc/ XXLvSxK08t voZf mdc4quf 1i 3LpTc+1nZnil+j

ef ZoXQcWUNEbCk5Q 8gvDi gHMbdA TgT4/ i Nj / 03PmueWs! j i yhbXDYOVGI CaGQpeNaFnhi |

XPr YEBKAv XI Og6 ECf w7l 7t dOwy PPOvCYFcbQEr 3gng9vg2l SVas8gl OU CeKNSJ9+wbKW dO
DAzt x GShuqDZj BXj +RSEL1Xr ABj Dpk9Rgpgk Bx3NNXEbCBnYg3+LUSHCt UBW 5anaJi 8JH28
39¢VXj dZbPXBPnp5S93SKj nuoi Bas8oKIl ThOy Ewwdb8Cf wz PAeg765BhD4AMVSz 0 QRy 6 Sf x f

6R0Z8Uo9a2nmk Bi GSKPvX7zQME384208Fv Tl aV\BUoOAhSNGHsf BWMAMT9pz Rl aWAK FP8CVWkRi Rg
zg20FYzTweQZOngj e6YRYSocX64l 22zhqVv3Y3Ddgevl i GoxDFgFMBQXeaAcchCvg6LpTl 3EC
fwgl CLRynwMLeLhj Uhvti 5aazjil Krd / QQ0hJIx/ | Xwyaei t LvEZH7 COH+cU8+AbFnf bSJZT
fyLDl 7bB5B3NNUTLSYLN zAl 8W RLyaYZsx41nl5GLxO+gnB+MA4nbl hg6YAJI NTp+CoJFqb
NDPX+Eei mUCYzi Er v7TA7GRTs60Cf ws28F+KnzzBj t XQunNCd5ey mnOMIKYov FXBt 5XW0 yE96
boHalahHdYf VnDc8Ki peL7eLaEv42JbgvOXG 11 AHI6OFxI i SUxnQBe9H 61 j zzHZ3s0j 5wz
KZ8El oNNZoTOxgk1h50Q veaN lseMoaf 2TpPhq6WKDoi dz1Ri 91 4zECf neg4k6J02YpZVAm
1xQUSSPYDawH4 DNl We TMhngBEW Zap7wu79zJkZYdCaegzabb/ FXFSu0+21dj Zbq4+Pdt sxI g
ng8pCbu2s7z+BqCOi Moz0l1ldeygAf gPANRz mQqvECH Dnj KWk XZI zQNPxnl u3MJZM f DXTSz De
| Bph1YO ag==

SNS Protocol code examples

® Java examples
® Example 1, generate a SNS Launch token with an RSA key
® Example 2: Validate a SNS Launch message
® Example 3: Generate a RSA key pair
® Example 4: Generate a EC key pair
® Python examples
® Example 1, generate a SNS Launch token with an RSA key
® Example 2: Validate a SNS Launch message
® Example 3: Generate a RSA key pair
® Example 4: Generate a EC key pair

Java examples

Example 1, generate a SNS Launch token with an RSA key

This example makes use of the authO JWT library. The key algorithm used is RSA.

i mport com aut hO. j wt. JWT;
i mport com authO.jwt.algorithnms. Al gorithm

i mport org.apache. cormons. codec. bi nary. Base64;

i mport java.security. KeyFactory;

i mport java.security.interfaces. RSAPri vat eKey;
i mport java.security.spec. PKCS8EncodedKeySpec;
i mport java.util.Date;

i mport java.util.UU D

public class Jwt Consuner Exanpl e {
public static void main(String[] args) throws Exception {

String resourceld = "dagstructuur";

String subject = "urn:sns:user:w kiw jk.nl:123456";

String issuer = "wikiwjk.nl";

String audi ence = "therapiel and. nl";

String email = "kl aas@levries.nl";

String firstNanme = "Kl aas";

String mddl eNane = "de";

String lastNane = "Vries";

String privateK =
"M | Epwi BADANBgk ghki GOWOBAQEFAASCBJI EwggSNAgEAAOHHAL7TOgNS) bvg++PBTATgmM t
j JSpr OnFYP6CGhI sl ReDN9scha/ BEPngzw8noK370i r c8Ei +I ngl 7NDmvyOQ0RY304j ugher j KB
NhhNcZT4St +ouW | y/ 899u4dTuhFL7hbSKr aY/ BBBdI owivhPi pl 5Fr vimr Ewnd 3f zEmAdDg0
HA8Ux v CGkawak | WiFGqUx Hvf kPy BFUEVt J7HEy FvKgl BQuj S7r EBW)B5y V21 | nwo2Whb801x
GAxkpUnTevCGnnYl ycj 3RvVLXRmgPQ 2VGhd1loGaZASFZGubZl LW G740W 30PF7Zxd We(q?2
Gp7VQA2bb1g1R5V+0nESBYt SnEok 8 CAWEAAQKB/ VO7cgbM 8y 3f sHI bgf xOV50ScW OY/ Er | 8
nKIFJgxns/ Jayvcpgt OQouy6AW/2i xj 9y33QC0V15r Of ki TgLW S5/ sykhwiFoeMunJ8C7Vndf
nModMA42z\WRef eRTf 4YA0BI ALPwePASK] zu2kt Jot HAMyvNr NpY5/ nT+J3YI gx/ Lxhl wk/ HxJ
6uVYi FpAl Nf AGF BphcgxzKWhWV23W/RYt r | Jc/ XXLvSxK08t voZf mic4quf 1i 3LpTc+1nmZnT+
j ef ZoXQcWUNEbCk5Q 8gvDi gHVbdA TqT4/i N / 03PnueWs! j i yhbXDYOVGI CaGQpeNaFnhi
| XPr YEBKAv XI Og6ECf w7l 7t dOwy PPOvCYFcbQEr 3gng9vg2l SVas8gl OU CeKNSJ9+wb KW d
0DAzt xGShuqDZj BXj +RSEL1Xr ABj Dpk9Rqpgk Bx3NNXEbCBnYg3+LUSHCt UBW 5anmaJi 8JH2
839c¢VXj dZbPXBPnp5S93SKj muoi Bas8oKIl ThOy Ewndb8Cf wz PAeg765BhDAAMVSZ 0 QRy 6Sf X
f 6R0Z8U09a2nmxBi GSKPv X7z QViG384208Fv Tl aWWBUoOQAhSNEHsf BMM9pz Rl aWAK FPSCWkRi R
0zg20FYzTweQZOnqj e6 YRYSocX64| 22zhqV3Y3Ddgev! i GoxDFqFMBQXeaAcchCvg6bLpTIl 3E
Cfwgl CLRynwMLelLhj Unvti 5aazj il Kr d / QQChJIx/ | Xwyaei t LVEZH7 COH+cU8+AbFnf bSJZ
Tf yLDI 7bB5B3NNUTLSYLN zAl 8W RLyaYZsx41nl5GLxO+gnB8+MA4nbl hg6YAJI NTp+CoJFq
bNDPX+Eei mJCYzi Er v7ITA7GRTs60Cf ws28F+KnzzBj t XQrNCd5ey mOMKYov FXBt 5XW0 yE9
6boHalahHdYf VnDc8Ki peL7eLaEv42JbgvOXG 11 AHI60OFX! i SUxn@Be9H 61 j zzHZ3s0j 5w
zZKZ8ElI oNNZoTOxgk1h50Q veaN 1lseMoaf 2TpPhq6WKDoi dz1Ri 91 4zECf nzg4k6J02YpZVA
nMlx QUS SPYDawHA DNl Ve TMhgBEW Zap7wu79zJkZYdCaegzabb/ FxFSu0+21dj Zbg4+Pdt sxl|
gnmg8pChu2s7z+BgC0i Mbz01ldeygAf gPANRzMQQVECH Dnj KWk XZI z QNPxnl u3MIZM f DXTSzD
el BphlYO ag=="; // Private key from appendi x B

KeyFactory keyFactory = KeyFactory. getlnstance("RSA");

RSAPr i vat eKey privateKey = (RSAPrivat eKey) keyFactory. generatePrivate(

new PKCS8EncodedKeySpec(Base64. decodeBase64(privateK)));

String jw = JWI. create()
. W t hl ssuedAt (new Date())
W t hJWI d(UUI D. randonJUI D() . toString())

. W t hSubj ect (subj ect)

. Wi t hl ssuer (issuer)

.wi t hAudi ence(audi ence)

.withC aim("resource_id", resourceld)

withCaim"email", email)

.wthCaim("first_name", firstNane)

Wi thd ai m("m ddl e_nane", m ddl eNane)

.withCaim("last_nane", |astNane)

. W t hExpi resAt (new Date(SystemcurrentTineM I Iis()+5*60*1000))
.sign(Al gorithm RSA256(nul |, privateKey));

Systemout. println(jw);

}
}

Example 2: Validate a SNS Launch message

This example is more complicated, mostly because the authO JWT library has no helper method for selecting the right algorithm from the JWT
header.

i mport com aut hO. j wt. JWT;

i mport com aut hO.jwt.algorithns. Al gorithm

i mport com authO.jwt.interfaces. DecodedJW,;

i mport org.apache. commons. codec. bi nary. Base64;

i mport java.security. KeyFactory;

i mport java.security.NoSuchAl gorithnExcepti on;

i mport java.security.interfaces. ECPubli cKey;

i mport java.security.interfaces. RSAPubl i cKey;

i nport java.security.spec.|nvali dkeySpecExcepti on;
i mport java.security.spec. X509EncodedKeySpec;

public class Jwt Provider Exanpl e {
public static void main(String[] args) throws Exception {
String token = args[O0];

/1l Get the algorithmnane fromthe JW.

String al gorithnName = JWI. decode(token). get Al gorithn();
/'l Get the issuer nanme fromthe JW

String i ssuer = JW. decode(token). getlssuer();

/'l Lookup the issuer.
String publicK = getPublicKeyForlssuer(issuer); // Public key from
appendi x A

/'l Get the algorithmfromthe public key and al gorithm nane.
Al gorithm al gorithm = get Al gorithn(publicK, algorithnNane);

/1 Decode and verify the token.
DecodedJWr jw = JWI.require(al gorithm
. W t hAudi ence("therapieland.nl") // Make sure to require yourself to
be the audience.
. bui 1 d()
.verify(token);

/1 Read the paraneters fromthe jwt token

String subject = jwt.getSubject();

String resourceld = jw.getC aim("resource_id").asString();
String email = jw.getCdaim"email").asString();

String firstNane = jwt.getCl ai m("first_nane").asString();

String mddleNane = jwt.getC ai m("m ddl e_nane").asString();
String lastNane = jw.getC aim("last_nane").asString();

Systemout.println(String.format("The SNS | aunch reci eved the user

with id % for resource %, the user email is %, the user is known as
% % 9%.",
subj ect,
resourcel d,
enmai |,
firstNane,
m ddl eNarnre,
| ast Nane)) ;
}
/**

* This method shoul d | ookup the public key configured with the issuer
fromthe configuration

* and / or persistent storage.

*

* @aramissuer the issuer fromthe JW token.

* @eturn a public key encoded as String

*/

private static String getPublicKeyForlssuer(String issuer) {

/1l Return the test key from Appendi x A

return "... ;

}

/**

* Unfortunately, this inplenmentation of JW has no hel per nmethod for
sel ecting the right

* algorithmfromthe header. The public key nmust match the al gorithm
type (RSA or EC), but

* the size of the hash algorithmcan vary.

* @ar am publ i cKey

* @aram al gorithm\ane

* @eturn in instance of the {@ink Al gorithn class.
* @hrows NoSuchAl gorithnException

* @hrows | nvali dKeySpecException

* @hrows |11 egal Argunent Exception if the algorithnmName is not one of
RS{ 256, 384, 512} or ES{256, 384, 512}
*/

private static AlgorithmgetAl gorithn(String publicKey, String
al gorithmNane) throws NoSuchAl gorithnException, |nvalidKeySpecException,
I'I'l egal Argunent Exception {
switch (al gorithmNanme) {
case "RS256": {
return Al gorithm RSA256(get RsaPubl i cKey(publicKey), null);

}
case "RS384": {

return Al gorithm RSA384(get RsaPubl i cKey(publicKey), null);
}
case "RS512": {

return Al gorithm RSA512(get RsaPubl i cKey(publicKey), null);
}
case "ES256": {

return Al gorithm ECDSA256(get ECPubl i cKey(publicKey), null);
}
case "ES384": {

return Al gorithm ECDSA384(get EcPubl i cKey(publicKey), null);
}
case "ES512": {

return Al gorithm ECDSA512(get EcPubl i cKey(publicKey), null);
}
defaul t:

throw new |11 egal Argunent Excepti on(String.format("Unsupported

al gorithm %", algorithnmNane));

* Parses a public key to an instance of {@ink ECPublicKey}.

* @aram publicKey the string representation of the public key.
* @eturn an instance of {@ink ECPublicKey}.
* @hrows NoSuchAl gorithnException
* @hrows | nvali dKeySpecException
*/
private static ECPublicKey get EcPublicKey(String publicKey) throws
NoSuchAl gorit hnExcepti on, |nvali dKeySpecException {
KeyFactory keyFactory = KeyFactory. getlnstance("EC");
return (ECPublicKey) keyFactory. generatePublic(
new X509EncodedKeySpec(Base64. decodeBase64(publicKey)));

}

/**

* Parses a public key to an instance of {@ink RSAPublicKey}.
*
* @aram publicKey the string representation of the public key.
* @eturn an instance of {@ink RSAPubli cKey}.
* @hrows NoSuchAl gorithnException
* @hrows | nvali dKeySpecException
*/
private static RSAPublicKey get RsaPublicKey(String publicKey) throws
NoSuchAl gorit hnException, |nvali dKeySpecException {
KeyFactory keyFactory = KeyFactory. getlnstance("RSA");
return (RSAPublicKey) keyFactory. generatePublic(
new X509EncodedKeySpec(Base64. decodeBase64(publ i cKey)));

Example 3: Generate a RSA key pair

i mport java.security.*;
i mport static org.apache. cormons. codec. bi nary. Base64. encodeBase64Stri ng;

public class RsaKeyPair Generator ({

public static void main(String[] args) throws Exception {
new RsaKeyPai r Generator().generate();

}

public void generate() throws NoSuchAl gorithnException {
/'l Create a new generator
KeyPai r Gener at or generator = KeyPairGenerator.getlnstance("RSA");
/]l Set the key size
generator.initialize(2024);
/] Cenerate a pair
KeyPai r keyPair = generator. generateKeyPair();
/1 Qutput the public key as base64
String publicK = encodeBase64Stri ng(keyPair. get Public().getEncoded());
/]l Qutput the private key as base64
String privateK =
encodeBase64Stri ng(keyPair. get Private(). get Encoded());

System out . printl n(publicK);
Systemout. println(privateK);
}
}

Example 4: Generate a EC key pair

i mport java.security.*;
i mport static org.apache. commons. codec. bi nary. Base64. encodeBase64Stri ng;

public class EcKeyPairCGenerator {

public static void main(String[] args) throws Exception {
new EcKeyPai r Generator().generate();

}

public void generate() throws NoSuchAl gorithnException {

/'l Create a new generator
KeyPai r Gener at or generator = KeyPairGenerator. getlnstance("EC");
Secur eRandom random = Secur eRandom get | nst ance(" SHALPRNG') ;
/1l Set the key size and random
generator.initialize(256, random;
/'l Generate a pair
KeyPair keyPair = generator.generateKeyPair();
/1 Qutput the public key as base64
String publicK = encodeBase64Stri ng(keyPair. get Public().getEncoded());
/1 Qutput the private key as base64
String privateK =

encodeBase64Stri ng(keyPair. getPrivate().get Encoded());

System out. printl n(publicK);

Systemout. println(privatekK);

}
}

Python examples

Example 1, generate a SNS Launch token with an RSA key

i mport jwt
i mport tine

fromuuid inmport uuid4

def main():
The public key
private_key ="

as provi ded by appendi x A

Format as PEM key

publ i c_key_format

ted = f'----- BEG N PRI VATE KEY----- \n'

f'{private_key}"' \

f*in----- END

Tinme function
payl oad = {}
payl oad[' sub'] =
payl oad['aud'] =
payl oad['iss'] =

PRI VATE KEY----- '

"urn:sns:user:w kiw jk.nl:123456'
"t herapi el and. nl'
"wi kiwjk.nl'

payl oad[' resource_id'] = 'dagstructuur’
payl oad[' first_name'] = 'Kl aas'

payl oad[' mi ddl e_nane'] = 'de

payl oad[' | ast_nane'] = 'Vries

payl oad[' emai | ']
payload['iat'] =
payl oad['exp'] =
payl oad['jti']

jWwm _encode = jwt.encode(payl oad, public_key formatted

= 'kl aas@levries.nl'
time.tinme()

tine.time() + (5 * 60 * 1000)
str(uuid4())

al gorithm=' RS256'). decode(' utf8')

print(jw _encode)

Example 2: Validate a SNS Launch message

\

i mport sys
i mport jwt

def main(jw _token):
The public key as provided by appendi x A

public_key ="'..."

Format as PEM key

public_key formatted = f'----- BEG N PUBLI C KEY----- \n" \
f'{public_key}" \
frin----- END PUBLI C KEY-- - - - '

Use the JWI decode, meke sure to set the audi ence
jw _decode = jwt.decode(jwt _token, public_key formatted,
audi ence="t her api el and. nl ")
user_id = jwt _decode[' sub']
email = jw _decode[' email "]
first_name = jwt_decode['first_nane']
m ddl e_nane = jwt _decode[' m ddl e_nane']
| ast_nane = jwt_decode['last_nane']
i ssuer = jwt _decode['iss']
uni que_nessage_id = jwt_decode['jti']
treatnent _id = jwt_decode[' resource_id']
print(f'User {first_nanme} {m ddle_nane} {last_nanme} with enuail
{email} '
f'from{issuer} wants to |launch treatnent {treatnent_id} '
f'with launch id {uni que_nessage_id}")

Example 3: Generate a RSA key pair

from cryptography. hazmat.prinitives inport serialization as
crypto_serialization

from cryptography. hazmat. primtives.asymetric inport rsa
from crypt ography. hazmat . backends inport default_ backend as
crypto_defaul t _backend

def main():

key = rsa.generate_private_key(
backend=crypt o_defaul t _backend(),
publ i c_exponent =65537,
key size=2024

)

private_key = key.private_bytes(
crypto_serialization. Encodi ng. PEM
crypto_serialization.PrivateFormat. PKCS8,
crypto_serialization. NoEncryption())

public_key = key. public_key(). public_bytes(
crypto_serialization. Encodi ng. PEM
crypto_serialization. PublicFornmat. Subj ect Publ i cKeyl nfo

)

print (' Public key {}'.format(public_key))

print('Private key {}'.format(private_key))

i f name == mai n

i n()

Example 4: Generate a EC key pair

from cryptography. hazmat . backends i nport default_backend as
crypt o_defaul t _backend

from cryptography. hazmat.primtives inport serialization as
crypto_serialization

from cryptography. hazmat. primtives.asymetric inport ec

def main():

key = ec.generate_private_key(
curve=ec. SECP256K1,
backend=crypt o_defaul t _backend()

)

private_key = key.private_bytes(
crypto_serialization. Encodi ng. PEM
crypto_serialization.PrivateFormt. PKCS8,
crypto_serialization. NoEncryption())

public_key = key. public_key(). public_bytes(
crypto_serialization. Encodi ng. PEM
crypto_serialization. PublicFormat. Subj ect Publ i cKeyl nfo

)

print (' Public key {}'.format(public_key))

print('Private key {}'.format(private_key))

i f name == mai n

i n()

SNS Launch protocol Java examples

Example 1, generate a SNS Launch token with an RSA key

This example makes use of the authO JWT library. The key algorithm used is RSA.

i mport com aut hO. j wt . JWT;
i mport com aut hO.jwt.algorithnms. Al gorithm
i mport org.apache. commons. codec. bi nary. Base64,;

i mport java.security. KeyFactory;

i mport java.security.interfaces. RSAPri vat eKey;
i mport java.security.spec. PKCS8EncodedKeySpec;
i mport java.util.Date;

i mport java.util.UU D

public class Jwt Consuner Exanpl e {
public static void main(String[] args) throws Exception {
String resourceld = "dagstructuur";

String subject = "urn:sns:user:w kiw jk.nl:123456";

String issuer = "wikiwjk.nl";
String audi ence = "therapiel and. nl";
String email = "kl aas@levries.nl";

String firstNanme = "Kl aas";

String mddl eNane = "de";

String lastNane = "Vries";

String privateK =
"M | Epwi BADANBgk ghki GOWOBAQEFAASCBJI Ewgg SNAgEAAOHHAL7TOgNSj bMy++PBTATgm t
j ISpr OnFYP6CGhI s| ReDN9scha/ BEPngzw3noK370i r c8Ei +I ngl 7NDmvQORY304j ugher j KB
nhhNcZT4St +ouW | y/ 899u4dTuhFL7hbSKr aY/ BBBdl owivhPi pl 5Fr vimr Ewmad 3f z EmAdDqO
HA8Uxv CGkawak | WhFGgUx Hvf kPy BFUEVt J 7HEY FvKgl BOuj S7r EBWB5y V2l | nwo2Wib801x
GAxkpUnTevCGnnYl ycj 3RVLXRmgPQ 2VGhd1loGaZASFZGubZl LW G740W 30PF7Zxd We(q?2
Gp7VA2bb1g1R5V+0nESBvt SnEok 8 CAWEAAQKB/ VO7cgbM 8y 3f sHI bgf xOV50ScWOY/ Er | 8
nKIFJgxns/ Jayvcpqt Opuy 6AW/2i xj 9y33QC0OV15r Of ki TgLW S5/ sykhwFoeMunJ8C7Vndf
nModMA42z\WRef eRTf 4YAoBI ALPwePASKI zu2kt Jot HAMyvNr NpY5/ nT+JYI gx/ Lxhl wk/ HxJ
6uVYi FpAl Nf AGF Bphcgxz KWhV23W/RYt r | Jc/ XXLvSxK08t vozZf mic4quf 1i SLpTc+1lnZnT+
j ef ZoXQcWUNEbCk5Q 8gvDi gHVbdA TqT4/ i Nj / 03PmueWs! j i yhbXDYOVGI CaGQpeNaFnhi
| XPr YEBk AvXI Og6ECF w7l 7t dOwy PPOvCYFcbQEr 3gng9vg2l SVas8gl OU CeKNSJ9+wbKWed
0DAzt xGShuqgDZzj BXj +RSEL1Xr ABj Dpk9Rgpgk Bx3NNXEbCBnYg3+LUBHCt UBW 5amaJdi 8JH2
839c¢VXj dZbPXBPnp5S93SKj nuoi Bas8oKI ThOy Ewwdb8Cf wz PAeg765BhD4AMNVSZ oQRy 6 Sf x
f 6R0Z8Uo09a2nmxBi GSKPv X7z QVia384208Fv Tl aWWBUoOQAhSNEHsf BWWT9pz Rl aWAK FP8BCWkRi R
0zg20FYzTweQZOnqj e6 YRYSocX64l 22zhqV3Y3Ddgev! i Gox DFqFMBQXeaAcchCvgbLpTI 3E
Cfwgl CLRynwMLeLhj Uhvti 5aazjil Kr Cl / QQChJIx/ | Xwyaei t LvEZH7 COH+cU8+AbFnf hSJZ
TfyLDI 7bB5B3NNUTLSYLN zAl 8W RLyaYZsx41nml5GLxO+gnB+MA4nbl hg6YAJI NTp+CoJFq
bNDPX+Eei mUCYzi Er v7TA7CGRTs60Cf ws28F+KnzzBj t XQriNCd5ey mOMNKYov FXBt 5XW0 y E9
6boHalahHdYf VnDc8Ki peL7eLaEv42JbgvOXG 11 AHI6OFXI i SUxn@Be9H 61 j zzHZ3s0j 5w
zKZ8ElI oNNZoTOxgk1h50Qt veaN 1seMoaf 2TpPhq6WKDoi dz1Ri 91 4zECf nzeg4k6J02YpZVA
mLx QUSSPYDawHADN We TMhgBEW Zap7wu79zJkZYdCaegzabb/ FxFSu0+21dj Zbg4+Pdt sxl
gqnmg8pChu2s7z+BgC0i Mbz01ldeygAf gPANRzMQVECH Dnj KWk XZI z QNPxnl u3MIZM f DXTSzD
el BphlYO ag=="; // Private key from appendi x B

KeyFactory keyFactory = KeyFactory. getlnstance("RSA");

RSAPr i vat eKey privateKey = (RSAPrivat eKey) keyFactory. generatePrivate(

new PKCS8EncodedKeySpec(Base64. decodeBase64(privateK)));

String jw = JWI. create()
. Wi t hl ssuedAt (new Date())
Wt hJWIT d(UUI D. randomUJUI D() . toString())
. W t hSubj ect (subj ect)
. W t hl ssuer (issuer)
. Wi t hAudi ence(audi ence)
.withC ai m("resource_id", resourceld)
wthCaim"emil", email)
.withCaim("first_name", firstNane)
.withd ai m("m ddl e_nane", m ddl eNane)
.withCai m("last_nane", | astNane)
. W t hExpi resAt (new Date(SystemcurrentTineM I Ilis()+5*60*1000))
.sign(Al gorithm RSA256(nul |, privateKey));

Systemout. println(jw);

}
}

Example 2: Validate a SNS Launch message

This example is more complicated, mostly because the authO JWT library has no helper method for selecting the right algorithm from the JWT
header.

i mport com aut hO. j wt . JWT;

i mport com aut hO.jwt.algorithnms. Al gorithm

i mport com authO.jwt.interfaces. DecodedJW,;

i mport org.apache. conmons. codec. bi nary. Base64;

i mport java.security. KeyFactory;

i mport java.security.NoSuchAl gorithnExcepti on;

i mport java.security.interfaces. ECPubli cKey;

i mport java.security.interfaces. RSAPubl i cKey;

i mport java.security.spec.lnvali dKeySpecExcepti on;
i mport java.security.spec. X509EncodedKeySpec;

public class Jwt Provi der Exanpl e {
public static void main(String[] args) throws Exception {
String token = args[O0];

/1l Get the algorithmnane fromthe JW.

String al gorithnName = JWI. decode(t oken). get Al gorithm);
/1l Get the issuer nanme fromthe JW.

String i ssuer = JW. decode(token).getlssuer();

/'l Lookup the issuer.
String publicK = getPublicKeyForlssuer(issuer); // Public key from
appendi x A

/'l Get the algorithmfromthe public key and al gorithm nane.
Al gorithm al gorithm = get Al gorithn{publicK, algorithnNane);

/'l Decode and verify the token.
DecodedJWI jw = JWI.require(al gorithm
. W t hAudi ence("therapieland.nl") // Make sure to require yourself to
be the audience.
. bui 1 d()
.verify(token);

/! Read the paraneters fromthe jwt token.

String subject = jwt.getSubject();

String resourceld = jw.getC aim("resource_id").asString();
String email = jw.getCdaim"email").asString();

String firstNanme = jwt.getCl aim("first_nane").asString();

String mddleNane = jwt.getC ai m("m ddl e_nane").asString();
String lastNane = jw.getC aim("last_nane").asString();

Systemout.println(String.format("The SNS | aunch reci eved the user

with id % for resource %, the user email is %, the user is known as
% % 9%.",
subj ect,
resourcel d,
enmai |,
firstNane,
m ddl eNarnre,
| ast Nane)) ;
}
/**

* This method shoul d | ookup the public key configured with the issuer
fromthe configuration

* and / or persistent storage.

*

* @aramissuer the issuer fromthe JW token.

* @eturn a public key encoded as String

*/

private static String getPublicKeyForlssuer(String issuer) {

/1l Return the test key from Appendi x A

return "... ;

}

/**

* Unfortunately, this inplenmentation of JW has no hel per nmethod for
sel ecting the right

* algorithmfromthe header. The public key nmust match the al gorithm
type (RSA or EC), but

* the size of the hash algorithmcan vary.

* @ar am publ i cKey

* @aram al gorithm\ane

* @eturn in instance of the {@ink Al gorithn class.
* @hrows NoSuchAl gorithnException

* @hrows | nvali dKeySpecException

* @hrows |11 egal Argunent Exception if the algorithnmName is not one of
RS{ 256, 384, 512} or ES{256, 384, 512}
*/

private static AlgorithmgetAl gorithn(String publicKey, String
al gorithmNane) throws NoSuchAl gorithnException, |nvalidKeySpecException,
I'I'l egal Argunent Exception {
switch (al gorithmNanme) {
case "RS256": {
return Al gorithm RSA256(get RsaPubl i cKey(publicKey), null);

}
case "RS384": {

return Al gorithm RSA384(get RsaPubl i cKey(publicKey), null);
}
case "RS512": {

return Al gorithm RSA512(get RsaPubl i cKey(publicKey), null);
}
case "ES256": {

return Al gorithm ECDSA256(get ECPubl i cKey(publicKey), null);
}
case "ES384": {

return Al gorithm ECDSA384(get EcPubl i cKey(publicKey), null);
}
case "ES512": {

return Al gorithm ECDSA512(get EcPubl i cKey(publicKey), null);
}
defaul t:

throw new |11 egal Argunent Excepti on(String.format("Unsupported

al gorithm %", algorithnmNane));

* Parses a public key to an instance of {@ink ECPublicKey}.

* @aram publicKey the string representation of the public key.
* @eturn an instance of {@ink ECPublicKey}.
* @hrows NoSuchAl gorithnException
* @hrows | nvali dKeySpecException
*/
private static ECPublicKey get EcPublicKey(String publicKey) throws
NoSuchAl gorit hnExcepti on, |nvali dKeySpecException {
KeyFactory keyFactory = KeyFactory. getlnstance("EC");
return (ECPublicKey) keyFactory. generatePublic(
new X509EncodedKeySpec(Base64. decodeBase64(publicKey)));

}

/**

* Parses a public key to an instance of {@ink RSAPublicKey}.
*
* @aram publicKey the string representation of the public key.
* @eturn an instance of {@ink RSAPubli cKey}.
* @hrows NoSuchAl gorithnException
* @hrows | nvali dKeySpecException
*/
private static RSAPublicKey get RsaPublicKey(String publicKey) throws
NoSuchAl gorit hnException, |nvali dKeySpecException {
KeyFactory keyFactory = KeyFactory. getlnstance("RSA");
return (RSAPublicKey) keyFactory. generatePublic(
new X509EncodedKeySpec(Base64. decodeBase64(publ i cKey)));

Example 3: Generate a RSA key pair

i mport java.security.*;
i mport static org.apache. commons. codec. bi nary. Base64. encodeBase64Stri ng;

public class RsaKeyPair Generator ({

public static void main(String[] args) throws Exception {
new RsaKeyPai r Generator().generate();

}

public void generate() throws NoSuchAl gorithnException {

/'l Create a new generator
KeyPai r Gener at or generator = KeyPairGenerator.getlnstance("RSA");
/1l Set the key size
generator.initialize(2024);
/] Cenerate a pair
KeyPair keyPair = generator.generateKeyPair();
/1 Qutput the public key as base64
String publicK = encodeBase64Stri ng(keyPair. getPublic().getEncoded());
/]l Qutput the private key as base64
String privateK =

encodeBase64Stri ng(keyPair. getPrivate().get Encoded());

System out. printl n(publicK);
Systemout. println(privatekK);

}
}

Example 4: Generate a EC key pair

i mport java.security.*;
i mport static org.apache. commons. codec. bi nary. Base64. encodeBase64Stri ng;

public class EcKeyPairCGenerator {

public static void main(String[] args) throws Exception {
new EcKeyPai r Generator().generate();

}

public void generate() throws NoSuchAl gorithnException {

/'l Create a new generator
KeyPai r Gener at or generator = KeyPairGenerator. getlnstance("EC");
Secur eRandom random = Secur eRandom get | nst ance(" SHALPRNG') ;
/1l Set the key size and random
generator.initialize(256, random;
/'l Generate a pair
KeyPair keyPair = generator.generateKeyPair();
/1 Qutput the public key as base64
String publicK = encodeBase64Stri ng(keyPair. get Public().getEncoded());
/1 Qutput the private key as base64
String privateK =

encodeBase64Stri ng(keyPair. getPrivate().get Encoded());

System out. printl n(publicK);
Systemout. println(privatekK);

}
}

SNS Launch protocol Python examples

Example 1, generate a SNS Launch token with an RSA key

i mport jwt
i mport tine

fromuuid inmport uuid4

def main():
The public key
private_key ="

as provi ded by appendi x A

Format as PEM key

publ i c_key_format

ted = f'----- BEG N PRI VATE KEY----- \n'

f'{private_key}"' \

f*in----- END

Tinme function
payl oad = {}
payl oad[' sub'] =
payl oad['aud'] =
payl oad['iss'] =

PRI VATE KEY----- '

"urn:sns:user:w kiw jk.nl:123456'
"t herapi el and. nl'
"wi kiwjk.nl'

payl oad[' resource_id'] = 'dagstructuur’
payl oad[' first_name'] = 'Kl aas'

payl oad[' mi ddl e_nane'] = 'de

payl oad[' | ast_nane'] = 'Vries

payl oad[' emai | ']
payload['iat'] =
payl oad['exp'] =
payl oad['jti']

jWwm _encode = jwt.encode(payl oad, public_key formatted

= 'kl aas@levries.nl'
time.tinme()

tine.time() + (5 * 60 * 1000)
str(uuid4())

al gorithm=' RS256'). decode(' utf8')

print(jw _encode)

Example 2: Validate a SNS Launch message

\

i mport sys
i mport jwt

def main(jw _token):
The public key as provided by appendi x A

public_key ="'..."

Format as PEM key

public_key formatted = f'----- BEG N PUBLI C KEY----- \n" \
f'{public_key}" \
frin----- END PUBLI C KEY-- - - - '

Use the JWI decode, meke sure to set the audi ence
jw _decode = jwt.decode(jwt _token, public_key formatted,
audi ence="t her api el and. nl ")
user_id = jwt _decode[' sub']
email = jw _decode[' email "]
first_name = jwt_decode['first_nane']
m ddl e_nane = jwt _decode[' m ddl e_nane']
| ast_nane = jwt_decode['last_nane']
i ssuer = jwt _decode['iss']
uni que_nessage_id = jwt_decode['jti']
treatnent _id = jwt_decode[' resource_id']
print(f'User {first_nanme} {m ddle_nane} {last_nanme} with enuail
{email} '
f'from{issuer} wants to |launch treatnent {treatnent_id} '
f'with launch id {uni que_nessage_id}")

Example 3: Generate a RSA key pair

from cryptography. hazmat.prinitives inport serialization as
crypto_serialization

from cryptography. hazmat. primtives.asymetric inport rsa
from crypt ography. hazmat . backends inport default_ backend as
crypto_defaul t _backend

def main():

key = rsa.generate_private_key(
backend=crypt o_defaul t _backend(),
publ i c_exponent =65537,
key size=2024

)

private_key = key.private_bytes(
crypto_serialization. Encodi ng. PEM
crypto_serialization.PrivateFormat. PKCS8,
crypto_serialization. NoEncryption())

public_key = key. public_key(). public_bytes(
crypto_serialization. Encodi ng. PEM
crypto_serialization. PublicFornmat. Subj ect Publ i cKeyl nfo

)

print (' Public key {}'.format(public_key))

print('Private key {}'.format(private_key))

i f name == mai n

i n()

Example 4: Generate a EC key pair

from cryptography. hazmat . backends i nport default_backend as
crypt o_defaul t _backend

from cryptography. hazmat.primtives inport serialization as
crypto_serialization

from cryptography. hazmat. primtives.asymetric inport ec

def main():

key = ec.generate_private_key(
curve=ec. SECP256K1,
backend=crypt o_defaul t _backend()

)

private_key = key.private_bytes(
crypto_serialization. Encodi ng. PEM
crypto_serialization.PrivateFormt. PKCS8,
crypto_serialization. NoEncryption())

public_key = key. public_key(). public_bytes(
crypto_serialization. Encodi ng. PEM
crypto_serialization. PublicFormat. Subj ect Publ i cKeyl nfo

)

print (' Public key {}'.format(public_key))

print('Private key {}'.format(private_key))

i f name =" mai n

i n()

SNS Launch protocol PHP examples

composer.json

"nanme": "othillo/sns-1aunch-denp-php",
"type": "project",
"require": {

"l cobucci/jw": "~3.2",
"br oadway/ uui d- generator": "~0.4.0",
"ransey/uuid": "~3.8"

I
"require-dev": {

"phpuni t/phpunit": "78.0"
}!

“l'icense": "MT"

<?php
require_once _ DIR . '/../vendor/autol oad. php';

use Broadway\ Uui dGener at or\ Rf c4122\ Ver si on4Cener at or ;
use Lcobucci\ JWN Bui | der;
use Lcobucci\ JWN Si gner\ Rsa\ Sha256;

$signer = new Sha256() ;

$privateKey = ' M | Epw BADANBgkghki GOWOBAQEFAASCBJ EwggSNAgEAAOH+AL 7 TONSj bMy++PBTATgN t j JSpr ONFYP6GhI s| ReDNO
scha/ BEPngzw8noK370i r c8Ei +I ngl 7NDmvyQORY304j ugher j KBnhhNcZT4St +ouW | y/ 899u4dTuhFL7hbSKr aY/ BBBdl owivhPi pl 5Frvm
nr Ewwd 3f zEmAdDgOHA8Ux v CGkawak | WiFGgUx Hv f k Py BFUEVt J7HEY FvKqgl BOuj S7r EBWIB5y V21 | nwo2Whb801x GAXxkpUhTevCGnnYI ycj

3RvVLXRmgPQ 2VGhd1oGaZA5FZGubZl LW G740W 30PF7Zx G Weq2Gp7V2bb1q1R5V+0nmESBvt SnEok 8 CAWEAAQKB/ VO7cgbM 8y3f sHI b
gf xOV50ScW OY/ Er | 8nmKIFJgxns/ Jayvepqgt Opuy6AW/2i xj 9y33QC0V15r Of ki TgLW S5/ sykhwFoeMunJ8C7Vndf nMbdVA42z\WRe f eRTT

4YAoBl ALPwePASKI zu2kt Jot HAMyvNr NpY5/ nT+JYI gx/ Lxhl wk/ HxJ6uVYi FpAl Nf AG BphcgxzKWhV23W/RYt r | Jc/ XXLvSxK08t voZf m
4c4quf 1i 3LpTc+1nZniT+ ef ZoXQWINEbCk5Q 8gvDi gHVbdO TqT4/ i Nj / 03PnueWs! j i yhbXDYOVGICaGQpeNaFnhi | XPr YEBKAVXI Og6
ECf w7| 7t dOwy PPOvV CYFcbQEr 3qng9vg2l SVas8gl OU CeKNSJ9+wbKWdODAzt x GShuqDZzj BXj +RSEL1Xr ABj Dpk 9Rgqpgk Bx3NNXEbCBNnYg
3+LUBHCt UBW 5anmaJi 8JH2839cVXj dZbPXBPnmp5S93SKj nmuoi Bas8oKI ThOy Ewwdb8Cf wz PAeg765BhD4AMAVSz 0 QRy 6Sf xf 6R0Z8Uo9a2nk
Bi GSKPvX7zQVG384208Fv Tl aVWBUoOAhSNEHsf BWWWT9pz Rl aWAk FP8CWRi Rqzg20FYzTweQZOngj e6 YRYSoc X64l 22zhqVv3Y3Ddgevl i Gox
DFqFMBQXeaAcchCvg6LpTl 3ECE wgl CLIRynwMLeLhj Uhvt i 5aazj i | Kr O / QQ0hJx/ | Xwyaei t LvEZH7 COH+cUB+AbFnf bSJZTf yLDl 7bB5B
3NNUTLSyLNi zAl 8W RLyaYZsx41ml5GLxO+gnB+MA4nbl hg6YAJI NTp+CoJFgbNDPX+Eei mUCYzi Er v7TA7GRTs60Cf ws28F+KnzzBj t XQm
NCd5ey mOMKYov FXBt 5XW0 yE96boHalahHdYf VmOc8Ki peL7eLaEv42JbgvOXGr 11 AHI6OFXI i SUxnBe9H 61 j zzHZ3s0j 5wz KZ8EI oNN
Z0TOxgk1h50Q veaN lseMoaf 2TpPhq6WKDoi dz1Ri 91 4zECf nzg4k6J02YpZVAmLx QUSSPYDawH4 DNl We TMhqBEW Zap7wu79zJkZYdCae
gzabb/ FxFSu0+21dj Zbg4+Pdt sx| gng8pCbu2s7z+BqC0i Mbz01deygAf gPANRzmqvECH Dnj KWk XZI zQNPxnl u3MJZM f DXTSzDel BphlY

A ag==",

$privat eKeyPem = "----- BEG N RSA PRI VATE KEY--- - - \n" . S$privateKey . "\n----- END RSA PRI VATE KEY----- "
$token = (new Buil der())

-> ("wikiwijk.nl")

-> ("therapieland.nl")

-> ((new Version4Generator())-> (), true)
-> (time())

-> (time() + 5*60)

->set("sub', "urn:sns:user:w kiw jk.nl:123456")

-> ('resource_id', 'dagstructuur')

->set (" first_name', 'Kl aas')

-> (' mddle_nane', 'de')

-> ('last_nanme', 'Vries')

->sei('email', 'klaas@evries.nl")

-> ($si gner, $privateKeyPem
-> OF

echo $t oken;

	SNS Launch protocol v0.1
	SNS Launch protocol technical specification
	SNS Launch procedure architecture
	SNS Launch protocol implementation guide
	Appendix A, SNS Launch protocol test tools and validators
	Appendix B, near future roadmap
	Appendix C, test keys and secrets

	SNS Protocol code examples
	SNS Launch protocol Java examples
	SNS Launch protocol Python examples
	SNS Launch protocol PHP examples

